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INTRODUCTION AND SUMMARY

The behavior of the ionization cross section near the
threshold is determined by the interaction of particles at
great distances. If the forces between all three particles
flying apart are short-range forces, then o ;_ i, v E2 [1]. If,
on the other hand, two of the particles are attracted to each
other according to Coulomb's law and interact with the third
one by means of short-range forces, then ¢ loanFVE7[2] Assu-
ming that the interaction force between two particles flying
apart is a short-range force and that the attraction of both
particles to the third one is a Coulomb force, we obtain
o joniz Vv E [3].

Of great practical importance in the theory of electron-
atomic collisions is the case when 2 particles (electrons) repel
each other and are attracted to a third particle (ion) by Coulomb
forces. In this case, various and insufficiently accurate approxi-
mations yield greatly differing results. Thus, in a Born approxi-
mation o ioni FUET, while in a Coulomb-Born approximation o ioniz V E-
More precise calculatlons [4,5] also yield one of these rules ge-
pending upon which part of the Coulomb interaction is taken into
account with greater precision. These differences show that in
order to obtain a correct threshold dependence it is necessary to
accurately account for all Coulomb interactions, none of which
being considered as short-range interaction. One such method of
calculation was proposed by Wannier [6], who found that the total

ionization cross section of a neutral atom is proportional to
gl.127,

Experimental results [7] also indicate small deviations from
linearity.

In this article, the angular and energy distribution of
electrons escaping after ionization is investigated near the
threshold by the Wannier's method. 1In the first section, a brief
[
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description is given of Wannier's method in a slightly modified
form, from which it follows that, in the case of small energies,
electrons escape in most cases after ionization into nearly op-

posite directions, i.e. with ¥;—x <« {. Further, it is shown that,
as the energy decreases, the dependence of the complementary an-
gular distribution on ¢,,—n remains similar and that only the

distribution width decreases proportionally to ET if the charge

of the remaining ion Z is equal to 1 or 2 g “——-(0 1 and at
E <V<

higher values of Z.

The energy distribution of escaping electrons was also in-
vestigated. For this purpose, a numerical integration of the
differential equations of motion was carried out. It was found
that the probability densitydw/dk, is practically independent of
the distribution of energies E. and E, between electrons (when
Z=1 in the entire ionization range the probability density varies
within a 1% range). In order to find the reasons for this rule,

a study was made of the case when the interaction potentials are
inversely proportional to the squares of distances. Such a poten-
tial is not found in nature, but, as Jacobi has shown [8], the
equations of motion admit in this case an analytical solution.

It was found that the probability density also remains practically
constant in this case (when Z=1 in the entire ionization range,
deviations do not exceed 1% either).

THE WANNIER'S THEORY

First, let us briefly examine, from a gualitative view
point, the process of single ionization at energies close to
threshold.

Following a collision, two electrons escape from the atom
at a certain angle with rather high velocities. As the distances,
r, and r from these electrons to the remaining ion increase,
their veiocities decrease since the electrons must overcome the
attractive force of the ion. As a result of the repulsion of the
electrons, the angle U;., between their radii increases, approaching
m. This process goes on until the interaction energy U (r;, r,)as
r, and r, increase becomes considerably lower than the total
energy E.

| U@, 1) | < E. (1)

Further, each of the two electrons moves almost along a
straight line and their velocities and the angle ¢,, vary little.

The smaller E, the greater is the area of the space in which
inequality (1) is not fulfilled and the more durable (i.e. at
great distances) 1is the substantial mutual repulsion of electrons
significant and the more accurate is their escape into opposite




directions. As a result, the complementary angle of electrons
escaping after ionization as E + 0 approaches 7 in all cases.

The motion of the electrons is subject to the laws of guan-
tum mechanics. When both electrons drift away to a sufficiently
great distance from the ion and from each other, the interaction
potential changes slowly and the examination of the problem is
simplified, since the results of its solution by means of gquantum
and classical mechanics are identical. At low energies, the boun-
dary between the region of space in which quantum mechanics must
be applied and the region where classical mechanics can be used,
as well as the notion itself in the "quantum-mechanical" region,
are practically independent of E and remain nearly the same as
when E = 0.

But the smaller is E the greater is the region in which
inequality (1) is not fulfilled, and the energy distribution
and the reciprocal angle ¥,,' of electrons vary.

Thus, at small values of E the energy and the complementary
angular distribution of electrons are determined mainly by the
region where the motion can be described by classical methods.
For this reason, the set up of the threshold law can be divided
into two parts. First, by solving the gquantum-mechanical problem,
we must determine the probabilities with which electrons with
given velocities fly into region of classical motion. Then, con-
sidering these velocities and coordinates as initial values, we
must solve the equation of classical mechanics and study the
motion of electrons as t + «., It is difficult to find an exact
solution for the first part of the problem. However, in order
to obtain certain formulas for the threshold behaviour with a
precision to within constant factors it is sufficient to assume
that the electrons fly into the region of classical motion with
a smooth velocity and directional distribution.

It is not possible to solve all problems concerned with the
threshold behaviour by using such assumptions; for example, one
cannot find the angular distribution of escaping electrons with
respect to the direction of motion of an incident electron. Since
there are no foundations to assume that ionization will take place
near the threshold only at a total moment L = 0, this distribution
will not be isotropic and in order to find its form the problem
must be solved in the "quantum-mechanical" region.

If L+#0, centrifugal terms ~r-2 appear in the equations of
motion. These terms have a weak effect at great distances inas-
much as they decrease more rapidly than the Coulomb terms (~r-1).
Furthermore in this article we shall examine only such problems
for which at small E substantial is mainly the interaction at
great values of riand r,; for this reason we shall assume that



L = O, knowing that at other, not too great*, values of L, we
shall obtain the same result.

Let us now examine the mathematical derivations of Wannier's
theory. Using a system of units in which the mass and the' charge
of an electron are eqgual to unity, the motion of electrons in the
region where classical mechanics are applicable can be described
by the following egquations:

dry Iy | mp—I
di? 5 —rf?
(2)
d*rs Zr, + r, — 1y
det T frg—r |37

Here Z is the charge of the ion remaining after ionization.
The mass of this ion is assumed to be infinite. Since the region
examined here is located far beyond the limits of the ion, we as-
sume that the ion creates a potential Zr-!, which is independent
of the position of its inner electrons.

Equations (2) have an important property which will be uti-
lized to a significant extent further in this article. If ri=fi(t)
is the solution of (2), then for any value of constant B

r; =B, (B (3)
is also a solution of (2). This can be easily verified by substi-
tuting (3) into (2). The trajectories of these solutions are si-

milar in form but differ in their scales and energies. 1If E is
the energy of the initial solution, then the energy of (3) is
equal to BE

For the ionization to take place it is necessary that an
electron escape into the infinity with an energy in the 0 to E
range. The smaller is E the smaller is the range of initial
values corresponding to the ionization. To clarify the threshold
behaviour of the ionization cross section, it is necessary to
study the dependence of this range on E. One case leading to
ionization can be easily found. This is the case when both elec-
trons drift away from the ion along a single straight line in oppo-
site directions, remaining all the time at equal distances from
the ion and moving with identical velocity (in celeStial mechanics,
this case is known as the Lagrange colinear case):

* The greater is L the smaller is the energy region in which
the threshold laws examined in this article are valid.




r1='—jrzEr. ) (4)

Substituting (4) into (2) we obtain the equation

d*r 4
dz T T T (5)

in the solution of which r and t are linked by the relation

—¢ _ —_—
Ayzgs——;—=l/p(p+1)-%'ln(2 Voo =1+ 20 + 1),
; | (6)

with ty; and E as the integration constants. Further in this
article we shall assume that ty = 0. In the region where Eri< Z,
formula (6) is reduced to

(7)

and the motion does not depend on E. The smaller is E the larger
is the space region where (7) is fulfilled, and at limit E - O
this equation is true in the entire space.

Ionization will take place not only under the initial condi-
tions which lead to relations (4) and (6), but also under other
closely related conditions. 1In order to study solutions close to
(4) and (6) it is convenient to pass from the variable r; and r,
to r, Ar, Srx:

r; =r +Ar + or;

‘1‘2=_—-Vx‘+Ar+8r, (8)

1 - . .
r‘:—r—r, A r ‘\ ‘0.
where - 2 (P 2 while i brlr are components of 2(rl rs)
Substituting (8) into (2) we flnd that, when L = 0 and ]Ar[éir '

|dr| < r, a variable r value satisfies (5) and Ar and &r satisfy the
eguations

d2Ar Ar aesr s
de? L5 e 2= (9)



at the same time, the directions of these vectors do not vary
with time. In the region Er<< Z, where (7) serves as the solu-
tion of (5), Eg.(9) is reduced to

d:Ar 162 Ar &sr 8z dr
de T 94z —1) ¢ de T T 9G4z —1) " E (10)

the common solution of which are the following equations:

) 1
Ar=r(Cy T 4 T, (11)
oo ,
Sr=r(CqT~T + Cy™TTT), (12)
A I0Z =9 1+/4Z=F
_~7:i Z—1 T oY az=1" (13)

Taking (7) into account, the independent variable t in (11) and
(12) is replaced by r. -

When Z ¢ 2, v is imaginary and Cg3 = Ct are complex guanti-
ties. I 2 3 these quantities are real, 'but v is always
smaller than 1/2. Therefore, in the region where (12) is appli-
cable the ratio $8r/r always decreases as r increases, i.e. the
angle between the electrons approaches 7. When Z is equal to
1l or 2, then, according to (12), &r/r decreases proportionally
to r=%¥ and in view of the imaginary nature of v it still oscillates
near zero.

The quantity u is greater than 5/2 for all values of Z. There-
fore, as r increases the first term in expression (11l) decreases
while the second one increases. When C; = 0, the second term descri-
bes the case when both electrons escape from the atom simultaneously
but with somewhat different velocities. This difference in velocities

is proportional to C,. When C, = 0, the first term describes the
case when electrons do not escape from the atom simultaneously, but
their velocities are such that the condition r, =r, is fulfilled

far from the ion. The sum of both terms represents a general case.

Solutions (11) and (12) are applicable if |Ar| <& r, |8 | <1
In most cases, after a collision both electrons escape from the
atom with noticeably different velocities and the inequality
JAr| << r is not fulfilled. However, we shall not consider such
cases inasmuch as there is no ionization in such a situation. After
a quantitative study of the equations of motion, Wannier found
that ionization will take place at small values of E only in the
case when the electron trajectories run through the region where (11)
and (12) are applicable*. We shall not bring forth here the conclu-

* In celestial mechanics, Sundman [9] has found a smilar rule,
namely when t approaches the moment of general collision the
configuration formed by the particles approximates (or comes
close to) one of the two configurations characterizing the

Lagrange colenear or equidistant solutions.



sion drawn by Wannier, but we shall merely point out that this
conclusion is based mainly on two considerations. The inequality
Ar{ <€ r is fulfilled because, when E <& 1 ionization will take
place only when the electrons escape from the atom with velocities
rather close to each other. Otherwise, the slower electron re-
mains longer in the vicinity of the ion, shielding its charge for
the faster electron and therefore more distant with time. As a
result the kinetic energy of the faster electron, does not decrease
to a sufficient extent as t »+ », i.e. it stays greater than E, and
no ionization takes place.

If the condition [éri < r is not fulfilled at the orlgln of the
trajectory the mutual repu131on of electrons will result in its
fulfillment during further motion.

To find the threshold behaviour of the cross section it is
necessary to determine how the energies and the complementary
angle of electrons depend at infinity on C,;, C,, C;, C, under the
initial conditions (11) and (l1l2). Moreover, one must be aware of
the probability distribution of electrons for these constants with
which they escape from the region of "quantum-mechanical" motion
and fly into the region where (11) and (12) are applicable. Since
the "quantum-mechanical" region is spatially limited (its dimen-
sions are of the order of several Bohr radii) and the motion does
not depend on E when Er<'Z (i.e. E appears only in higher terms
of the expansion in powers of E), we can assume that at small E
values the electrons fly into the region where (11) and (12) are
applicable with a smooth velocity and directional distribution
which is independent of E. As a result, if we are interested
only in the first term of the expansion in powers of E, the proba-
bility density of constants C; may be considered as independent of
E in the case of small values of E. This density is standarized
for unity and therefore approaches zero at high value of Cj.

For small values of C;, there is a linear dependence between
the energies of electrons at infinity and C; and C, and between
their complementary angle and C3 and C,. Using (3) we may determine
how the region of C; values, in which the indicated linear depen-
dence takes place, varies, as E becomes smaller.

According to (3), the dimensions of similar trajectories are
inversely proportional to E. We shall obtain for various values
of E similar trajectories if, in the”%nitial conditions (11) and
(12) , we vary C, proportionally to E_7+§i and C;, C; and C, propor-

. —L_=x v Ly . .

tionally to g ¢ % Eg7¢ 77 and E %+ 72 respectively. Subjec-
ting to such a transformation the trajectories, of which the ener-
gies and the angles depend linearly on C;, we shall again obtain
trajectories with linear dependence. Therefore, when E decreases,




the region of linearity with respect to C, will decrease propor-
tionally to p—y+F while the regions of linearity with respect to
Cys C3, Cy * will increase proportionally to the remaining
above-mentioned powers of E. As a result, when E is sufficiently
small, the dependence on C,, C;, C, will be linear (and the smaller
is E the less so) in the entire region where the probability density
of these constants is somewhat different from zero. This is why

for small E the energies of escaping electrons are determined only
by the one constant C:.

The direct finding of this dependence is made difficult by
the fact that, in the cases when the energies of electrons at in-
finity differ greatly, Egs.(2) can be linearized with respect to
C, only in the initial portion of the trajectory, where (7), (11)
and (12) are valid. Therefore, we shall subsequently determine
the energy distribution of electrons by numerical integration.
However, even if the form of this distribution is unknown, we can
find its dependence on the total energy E by using (3).

Ionization will take place only in the terminal range of C,
values. According to (3) and (11), the length of this range de-
creases proportionally to E'—;+§jwith decreasing E and will be
small at small values of E. The probability density of C,
will be a smooth function of C, insofar as, according to (7) and
(11) , in the case of fixed values of C,, and r, C, is proportional
to the difference in velocities of both electrons. Since we are
interested only in the first term of the expansion in powers of E,
this probability density of C, can be considered as being constant
in the ionization range. Then, the total ionization cross section
is simply proportional to the length of the range of C, values
leading to ionization:

w_ L
N"z 4

Gioniz » (14)
which is precisely the result obtained by Wannier. If Z = 1, then,
according to (13) and (14), ¢ j45piz El.127 The greater is Z

the closer is this dependence to a linear one.

Summerizing, it can be stated that the Wannier's theory is
based on the following four considerations:

1. At small values of E, the energy dependence of ionization

' cross sections is determined mainly by the region where particles

are far from each other and their interaction potentials vary

slowly, and therefore the motion is subject to the laws of classi-
cal mechanics inasmuch as the results of quantum and classical mecha-
nics are identical in this case.

2. Electrons enter this region with a smooth velocity and



directional distribution which for small values of E can be prin-
cipal term of the expansion is the only one of interest, if con-
sidered as independent of E.

3. At small values of E, only those trajectories lead to
ionization which pass in their initial portion, through the region
where linearized solution of (11l) and (12) are applicable.

4., The law of similarity (3) can be used to find the enexrgy

dependence of ionization cross sections.

COMPLEMENTARY ANGLE AND ENERGY DISTRIBUTION OF
ELECTRONS AFTER IONIZATION

If C; = C, = 0 the electrons escape in opposite directions
and the angle 9, between their radii at infinity is equal to w.
When C, and C, are small, the difference U;—a is small and depends

linearly on C3 and C, (if C; and C, are fixed), since the equation
of motion can be linearized with respect to ér (independently of
the gquantity Ar). In the linearity region, at fixed values of Cj
and Cq, the difference ¥,, —x decreases, with decreasing E. The
1,y
term with C,; decreases proportionally to £* %, and the term C,
1 v

e e N . 1
proportionally to E£* 2?. 1If Z » 3, then 0<v <5 and at small
values of E, when the more rapidly decreasing term C3; can be disre-

1 v
garded ¥, —n~CE:v"2. If Z =1 or 2, then v is an imaginary value

. . 1
and 9, —x decreases proportionally to Ef, oscillating through zero
in view of the terms VEti7'.

For constant C; form of the complementary angle distribution
is determined by the probability densities. Since at sufficiently
small energies the dependence of the difference ¥ —7 on C3 and Cyu
will be linear in most cases, the form of the angular distribution
will not change with decreasing E but will only become proportional

1 v
to LY 2, provided Z > 3, or proportional tovE% when 2 = 1 or 2. In
N
the latter case the oscillating terms Ei‘%J will not cause fluctu-
ations in the angular distribution inasmuch as they are multiplied
by C; and C,, which are also complex and whose phases undergo random
variations.

As a result, by studving the motion in the region where classi-
cal mechanics are applicable it is possible to determine how the
complementary angular distribution narrows down with an increase in
E, but in order to find the form of this distribution it is also
necessary to solve the problem in the "quantum-mechanical" region.
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On the other hand, the distribution of energy among elec-
trons can be found by solving only the eguation of classical mecha-
nics. As was shown earlier, only the one constant C,, the proba-
bility density of which can be considered as constant, determines
the energy distribution at small value of E. Therefore, Eg. (2)
must be integrated at a certain fixed energy E, at the initial con-
ditions (1l1l) and (12), at C, = C3 =C, = 0 and at different values
of C,, and the energy of one of the electrons (for example, the first
one) must be determined at infinity £,() as a function of C,. In
E (00))

14

other words, we must construct a function of (,=f(g) (azzf‘E the

djie}
i

ae

derivative of which in the range 0 < e <! is proportional to the

probability that the first electron escapes after ionization with
the energy E,(c0)=¢E and consequently, yields after standardization
the probability density of the relative energy distribution.

It follows from the law of similarity (3) that, at different
E values, functions /(¢ differ only by their constant factor and
therefore for small values of E the form of energy distribution is
independent of E. To find the form of this distribution, Egs. (2)
were numerically integrated on a BESM-2M electronic computer.

When C3; = C, = 0, the motion takes place along a single straight
line and Egs. (2) are reduced to

r (ry - 12)
- Z 1 (15)
rz_—7§-+ (ry +12)°
and when C, = 0, the initial values of (11), (1l2), are expressed
in the form .
Sy
re=rxCré 2;
. 3 _Lawey. 16
-)'1.2'_—_[1#02 (_‘4——*"%)7' 5+2]r’ . ( )
where
RIARE

The numerical integration was carried out by Runge-Kutta's
fourth order method with Merson's [10] modification. The integra-
tion step was automatically selected in such a way that the error
resulting from disregarding higher expansion terms in the integra-
tion formula do not exceed 0.5.107°. The integration was carried
out for E = 1, starting with r = 0.001 and ending with 7 > 10*
where rmn is the distance from the nearest electron to the ion.
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The dependence of C, on e is shown in Figures 1 and 2. Within
the limits 2 - = function C, = f£(eg) must be precisely linear, since
in that case the interaction between electrons is negligibly small
by comparison with their interaction with the ion. Therefore, the
energies of both electrons are preserved separately. In this case,
the dependence of electron energy at infinity on C, is linear, in-
asmuch as according to (16) in the initial portion of the trajectory
the small values of C, will cause small and linear electron energy

]1

deviations with respect to C, from =

As may be seen from Figs. 1 and 2, functions C, = f(e) do not
practically differ from straight lines even when Z s~oo. Therefore,
the probability density of relative energy distribution in the
ionization range is practically constant for any values of Z. In-
significant deviations from a constant value increase as Z decreases.
These deviations are zero when ¢ = 0.5 and reach maximum values
when ¢ = 0 and ¢ = 1, But even then, when Z = 1, these deviations
are smaller than 1%.

F

< ¢
! : :
or- -10F
|
g2r -20~
"Fig.l. Fig.2.
Dependence of C, on Dependence of C, on € when
when 2 = 1 and 2 = 5 Z = 0.3.

Figure 2 shows the dependence of C, on ¢ found formally by
solving the problem for Z = 0.3. It was found that in this case
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the change in the probability density is greater than for Z = 1,
but even then the changes are insignificant and are less than 2%.

For small E we may find by the Wannier's method not only the
energy distribution of electrons escaping after ionization but
determine also the probabilities of excitation of highly excited
levels. For this purpose, it is necessary to calculate f(g) for
negative values of e¢. If for E= 1 C:=f(E,(9)), then according to

£_L - ‘
(3) and (11) for other energies C,=EZ * [(E (®)E)-, The probability
of excitation of the n-th Bohr level with such a low energy Ep, that
the motion can be considered in a guasiclassical manner, is then
proportional to
a1 n_ 5 A
EZ T [f(E,IE)—f(Epy1/ Bl = EZ © (E,py—E) | [ (EJE),
- df (e
where f(®==-l£3; Let us note that the total ionization cross
’ Top

2

—— 1
section is proportional to £? *[f@)——fCZJ] with the same proportio-

nality factor. Figure 3 shows f(¢)found numerically for Zz = 1 and
negative e values. As may be seen, function f(g) does not deviate
much from a linear dependence and its derivative f (9 is almost cons-
tant. Therefore, if E, is of the same order oxr smaller than E the
probability of excitation of the n-th level is simply proportional
to the distance between neighboring levels #ny1—Z%. and varies slowly
s
with energy variation, namely as £% % (i.e. E0.127...when 2z = 1).
The deviations of () from linearity increase as |¢| increases. When
B 1 :
le| =1 f(s) must increase as |e[2 ¢ (i.e.~|¢|"*¥~when Z = 1) since
‘when Ep > E, the probability of excitation must be weakly dependent
on E.

Fig. 3. Dependence of C, on ¢ in ionization and excitation
ranges with z = 1.
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The significant feature of Wannier's theory is the fact
that electrons escape from the ion in opposite direction as a
result of mutual repulsion, i.e. as the electrons drift farther
away from the ion ¥, approaches n and ér/r approaches zero.
Therefore the laws of threshold behavior thus obtained are appli-
cable only when E values are so small that, in the region U (r, n)i=>E,
where the motion does not depend on E, 8r/r has time to decrease
sufficiently, i.e., so that a linearized solution of (12) may be
applicable for most trajectories of interest to us.

To determine how fast 8r/r decreases in practice we have
investigated equations of motion (2) for Z = 1 values when E = L = 0
and r; = r, all the time by numerically integrating the cases
of such initial. .

' 1 ' r T . .
The dependence @Ezﬁr(ﬁm'_n)or7f' on -~ thus obtained is shown

o Ty
in Figure 4. Here, r is the distance between the electron and
the ion and r, is one of the values of r at which 9, =0. According
to (3), when E = 0, the.trajectories with different ro values are
similar in shape but their dimensions are proportional to rg.
This is why the trajectories with different initial conditions

give in Fig.4 a one-parameter family of curves ¢ (;J with diffe-~
0

rent heights of y(l) peaks when r = r,. ¢-<4&mg¥=m@&$2 always

takes place. Otherwise the energy of repulsion between electrons
is greater than the energy of their attraction to the ion, which
is impossible when E = 0. The lower curves in Fig.4 are close to
a linearized soluton of (12) which, substituting C3 and Cy, by
other constants A and r,, can be written in the form:

ry_L 1 A?T r 'b /3)
g=4 (-__) % cos‘(TV?lnTo-—axctg“ Y ] (18)

Ty
The behavior of y in (18) when r increases is determined
"1

mainly by the decreasing term r *. The cosine agreement varies

-

slowly and increases byfjf when r rises 130 times. Since such

high values of %; are not shown in Fig.4 for the lower curves,

0!
only the diminishing but not the complementary oscillatory charac-
ter of these curves can be seen. According to Fig.4, the depar-
tures of the solutions from (18) increase as y(l) increases and
the oscillations become more rapid. The amplitude of oscillations
decreases as r increases for all y(l) (every successive peak is
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lower than the preceeding one*). Therefore, at sufficiently
great values of r, the motion takes place according to linearized
solutions. However, the approximation to these solutions is slow,
particularly if y¢(l) is close to ¢,,, . This fact may limit the
region of applicability of the above-mentioned threshold laws to
very low energies. ‘

©

=020008
max

100+ 4

025;

Every curve oscillates in an infinite-to-one manner. In

order to determine the dependence of these oscillations on
v(1l), it is sufficient to know the shape of the curves between
two adjacent peaks. Postulating the height of the new peak
again equal to Y (1) and its position being ry, we can find

the height and the position of the next peak, etc.,



15

ENERGY DISTRIBUTION FOR THE CASE WITH A

POTENTIAL ~ -2

In order to understand the reasons responsible for the
practically linear dependence of C, on e, it is interesting
to ascertain whether such a dependence is. characteristic only
for a Coulomb field or whether it is observed also in other
cases. This is why we shall study in this section the problem
of the case when the interaction forces are inversely propor-
tional to the cubes of the distances. ' In this case, the prob-
lem of motion along a single straight line (C3 = C, = 0) can
be solved analytically, as was shown by Jacobi [8]. If the
vectors rj and r, -rrun in opposite directions, the interaction
potential has the form:

Z Z 1
U= [~+—*T:"r] (19)

ou . ou
1=‘“‘"(7?; T2= =5 (20)
2.
similarly to (7) and (11), we find the solution
1 .
n=n= @i (21)
and the solutions close to the latter
T2 = (82 — O 1+ (Co* + C2 )L (22)
At the same time
. (23)

The solutions (22) satisfy (20) when

[ry—r | <1y Lry L Z. (24)
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Because of the last inequality, when E # 0, the solutions
satisfy formula (22) only near the origin of coordinates. We
must ascertain how the electron energies depend on C, as t + =,
if formula (22) with C; = 0 is valid for small values of t.

Multiplying the first equation in (20) by r, and the second
one by rp, summing them up and still adding to them the following
equations

20+ 1) =4E~4U, (25)

we obtain
& s, o .

A:ﬁ;(rIT‘Q)::4€: (26)
inasmuch as the sum of the terms containing U is zero because of
the uniformity of potentials. Passing in (26) from ry, and r,
to the new variable p and ¢

n=pesing  ang 2 =ecosg, (27)
we obtain the equation
Lt (28)
. det =
with the solution
ot =2 [Et + (82 — ¥ ], | (29)

which, when conditions (24) are met, corresponds to (22) with
C1=0.

In the solution (29) p does not depend on C,. Thus, we
find that only ¢ depends on Cz. Substituting (27) and (29) into
(25) we obtain an equation for the determination of ¢ (t):

o't =2M¢)—82+1; (30)
Ag)=— U = Zsin ¢ + Zcos™? ¢ — (sin ¢ + cos )2 (31)

Eg.(30) is integrated in quadratures. At initial conditions
(22) with C; = 0, the solution of this equation is the following
equality:
de A dt
—8Z +1 f 2t [Et + (82 — 1) 7]

.
f ) (32)

T+Q#

We must pass in both parts of equality (32) to the limit
to » 0. From (32) we obtain the dependence between C, and the
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energy of the first electron at infinity in the case of ioniza-
tion:

a . '
(SZ—i) 202:]?“(8““'-)8:(83 Z)V (33)

where

Z | , (34)
T—qgz+ 1/(1 —S]Z)(1 “E‘ZZ) ‘

Similarly to the Coulomb case, it follows from (33) that the C,
range in which ionization can take place with decrease of E dec-
reases proportionately to EH and that the form (shape) of the
probability density of the relative energy distribution does not
depend on E.

The departure from linearity of the dependence of C, on ¢
is determined by the factor J (s Z) in (33). According to (34),
$ (e, Z) depends on e. However, as can be seen from Figure 5, this
dependence is in fact extremely weak. When Z=c0SJ(e,0) =1 and
it does not depend on e. When Z=1 J (¢ 1) varies from unity to .
0.9947, and when Z = 0.125 it varies from 1 to 0.9510. If Z <1/8/
then u is an imaginary value and our analysis is not applicable.

Thus, as in the Coulomb case, the probability density of the

dCs :
relative energy distribution ™ 5 is practically also constant .

when U,\;L_.
o
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Dependence (34) of J on ¢ and Z.

* % % THE END * % *
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